Think back to the last time you used a BVM (bag-valve mask) on an unresponsive patient while the ambulance headed toward the nearest emergency department. While wiping away the vomit or other bodily fluids, you may have thought, ‘This isn’t nearly as easy as it was in class with the manikins.’ With that experience in mind, if anyone were to ask you if bagging works, you most certainly would say, ‘Yes.’ Maybe more so in some cases and less so in others, but does bagging work? Absolutely! And if asked if bagging is your best choice? More than likely you would respond, ‘Probably not,’ especially if endotracheal tube (ETT) placement was quick, easy, and virtually foolproof. But since ETT placement is typically none of those things, bagging, while an acceptable choice, shouldn’t be your only choice. And the good news is that there is indeed a better way—alternative airways!

Also known as extraglottic devices, these airways are inserted into the patient without the need for visualizing the vocal cords. They are effective alternatives to endotracheal intubation as well as bag-mask ventilation. Some of these devices, called supraglottic airways, sit right on top of the vocal cord structures. Others sit in the esophagus and have balloons to seal above and below the ventilation outlets, so the air coming out can only go into the airway. Either design provides an excellent alternative for airway management. But with this new choice, let’s explore some questions and answers about alternative airways.

Who: BLS vs. ALS vs. Nurses vs. Physicians

The answer to this question is easy—all of the above. Research shows nurses can successfully place a King airway, LMA, or i-gel airway. The training and skills required are minimal, and inevitably less demanding than bag-mask ventilation or endotracheal intubation.5 So the only barriers to using these alternative airways are local scope of practice, availability, remembering you have them and, occasionally, the EMT. These devices are in the paramedic and advanced EMT scope of practice in nearly every jurisdiction, and in the EMT-basic scope in many. They are stocked in most ambulances, many emergency departments and probably every operating room. In most ORs these devices are more common than intubation. Just ask your last paramedic student about their experience in the OR trying to get live intubations.

What: The Choices Out There

There are a huge variety of devices available in the alternative airway arena. They may be generally categorized as those that sit above the glottis (supraglottic, see Figure 1) and those that sit behind it (retroglottic, see Figure 2) in the esophagus. Within each of these categories, device vary by whether they (1) have adult and pediatric sizes, (2) allow the stomach to be emptied or at least vented and (3) have specific design modifications that allow an endotracheal tube to be placed through them. With some alternative airways, placing an ETT can be done blindly, but it is preferable to do this with a flexible scope or optical stylet once in the more controlled environment of the ED or OR.

For a list of selected disposable alternative airway devices for prehospital or hospital use, see the accompanying sidebar on page 44. We recommend understanding the options between the BVM and the ETT

By Scott DeBoer, RN, MSN, CPEN, CEN, CCRN, CFNR, EMT-P; Darren Braude, MD, EMT-P; Michael Seaver, RN, BA; & John Pisowicz, RN, BSN, NRP, FI

Bound Tree Medical

Figure 1: Laryngeal mask (supraglottic) and associated anatomy.

Ambu

Understanding the options between the BVM and the ETT

Figure 2: King airway (retroglottic) and associated anatomy.
devices with gastric venting or access when possible.

Where: EMS vs. ED, Etc.

Alternative airways are popular in many EMS services and ORs. Elsewhere—for example, with code seminars, ICU and ED—there are, while increasing, is still highly variable.

In our experience, ED nurses and physicians are often unfamiliar (and hence uncomfortable) with extraglottic devices that may have been placed prior to the patient’s arrival. Many physicians instinctively pull like alternate airway and immediately try to place an endotracheal tube because they assume it provides superior airway management. Though well intentioned, prior to “pulling” the extraglottic device, one should first evaluate whether the airway device is working. If it is, don’t mess with success!

It is helpful to consider why the alternative airway was placed. It’s one thing if it was placed by a BLS crew that had no other option and isn’t working well. Then, certainly, pull it. But it’s altogether different when it was placed by a junior paramedic after a failed intubation. In that case, as in so many others, it’s working, leave it! Of course you can imagine all sorts of scenarios that fall between these extremes, but in general, be reluctant to pull any airway device that is successfully oxygenating, ventilating and providing protection against aspiration.

Rapid sequence ventilation is a recently described out-of-hospital intubation being used in non-trauma situations. RSA calls for the same medications and preparations used for RSI, but instead of placing an endotracheal tube, you place an extraglottic airway—preferably one that allows for ventilating and providing protection against aspiration.

LEMON

The LEMON mnemonic can help the prehospital provider determine if an alternate airway might simply be the airway of choice due to the likelihood of a difficult laryngoscopy.

L—Look externally (long or short mandible, such as in Pierre Robin syndrome, high, arched palate, short “bull” neck, beard or mustache, large tongue, large incisors).

E—Evaluate the 3-3-2 rule (three fingers of mouth opening, three fingers between mentum and brow, two fingers between the hyoid and thyroid cartilage).

M—Mallampati score of Class III or IV suggests higher risk of a difficult airway.

O—Obstructions (conditions such as angioedema, epiglottitis, supraglottic swelling, no tracheal intubation report a mixed bag of results and have elements some consider to be inherently flawed.

LEMON

The LEMON mnemonic can help determine if placing an endotracheal tube is the preferred choice due to factors that could lead to ineffective bag-mask ventilation.

M—Mallampati score of Class III or IV suggests higher risk of a difficult airway.

O—Obstruction (ability to swallow secretions due to conditions such as angioedema, supraglottic swelling, smoke inhalation).

E—Age greater than 55 (age-related decreased structural definition due to facial atrophy that leads to poor mask seal). N—No teeth (consider replacing dentures if available to achieve a better mask seal). S—Stiff (asthma, COPD, AERD, term pregnancy).

When: LEMON, MOANS & RODS

The RODS mnemonic can help determine if the successful placement of a rescue airway may be compromised. In severe cases, the provider may consider a circuitry-resuscitation as the airway of choice if endotracheal intubation or placement of an extraglottic device is likely to be unsuccessful or ineffective.

R—Restricted mouth opening.

O—Obstruction of the upper airway or large tongue.

D—Distorted or disrupted airway.

S—Stiff or increased ventilating pressure.

When: Cardiac Arrest and the Pig Study

Studies on cardiac arrest outcomes with extraglottic airways vs. traditional endotracheal intubation report a mixed bag of results and have elements some consider to be inherently flawed.

The Resuscitation Outcomes Consortium and AIRWAYS-2 studies focused on large, international multicenter trials to investigate this issue. Their findings suggest that if you are in an EMS system with plenty of experienced intubators who can intubate on the first attempt without compromising CPR and still carry out all the critical ACLS interventions, then perhaps intubation will prove to be less. But in most of our systems, where manpower is limited and initial intubation success rates are less than 80%–90% even with stepping CPR, we suspect the patient is better off with an extraglottic airway.

As a result of a pig study, a consensus was raised about alternative airways potentially
ALTERNATIVE AIRWAYS

impacting cerebral perfusion due to inflation of the cuffs on the airways. Specifically at question was whether the cuffs presented a danger by pressing directly or indirectly on the carotid vessels. This concern was recently countered with a case series based on human patients who had CT scans of their neck performed while being intubated through alternative airways. Neuroradiologists could not identify any mechanical impact on the carotid vessels.20

We certainly need more studies on this issue, but for now it appears men are not actually being harmed.

If ongoing research continues to reflect positively on the use of extraglottic airways, we envision these devices being used not only in EMS, the OR and the ED, but for cardiac arrests throughout the hospital, not just as backup airways but increasingly as airways of choice in situations where intubation and training are critical.

Imagine being called for a patient who has suffered a cardiac arrest or similar life-threatening situation. Whether you are an EMS provider, an ED staff member or part of the rapid response team, an alternative airway can be placed immediately without stopping compressions.

Even better, you can decompress the stomach and continue ACLS without stopping abdominal distention) is important.

When in doubt, it usually needs to be withdrawn. Pay attention to teeth markings. When in doubt, it usually needs to be withdrawn.

How do you confirm effective ventilation?

How much air do you need to inflate the device with?

For the King airway, look at the outside of the package or side of the device for a range. If a range is given, inflate with the range’s average volume and attempt ventilation. Adjust the volume if necessary to prevent detectable air leaks and achieve good chest rise. Better yet, use a manometer! (The desired pressure is 40–60 cm H₂O.) If a symbol is present, start with half of what is recommended and increase as needed.

For the laryngeal mask airways, look at the outside of the package or the device/pilot balloons. If a range is given, inflate with the range’s average volume and attempt ventilation. Adjust the volume in small increments as needed to prevent detectable air leaks and achieve good chest rise. Better yet, use a manometer! (The desired pressure is 40–60 cm H₂O.) If a symbol is present, start with half of what is recommended and increase as needed.

The LMA Supreme has a fixation tab that can be used to assist in determining the correct depth. This tab should be about one finger’s breadth above the lip when device “seats.” If it’s farther out, a smaller size is most likely needed. If you hit the lips before it seats, a larger size is most likely needed.

With retroglottic devices, it is easy to overinflated. Pay attention to teeth markings. When in doubt, it usually needs to be withdrawn.

For i-gels, no inflation is needed.

How do you determine the device is in the right spot?

Supraglottic devices will “seat.” If the device is properly placed it will “seat” and stay in place. It is easy to oversize a supraglottic device. Make sure the patient is well oxygenated and the stomach is empty.

First of all, if it’s working, consider leaving it alone! For the King airway, don’t try the bougie trick. This is no longer recommended by the manufacturer. Make sure the patient is well oxygenated and the stomach is emptied. Then deflate the balloons and sweep the device over to the left side of the mouth. This technique usually allows enough working room to intubate while keeping the suction going and the esophagus blocked. And now there’s just one hole available!

For the Combitube and Easy Tube, deflate the proximal pharyngeal balloon, but leave the distal esophageal balloon inflated. Swep the device all the way to the left of the mouth with the King airway.

For the LMA Supreme, no good option is readily available. Oxygenate the patient as well as possible, empty the stomach, then pull the device out. An exceptionally proficient practitioner can work around it with a video device, but this method is not generally recommended.

For the i-gel, it is reasonable to try blind intubation using the manufacturer’s OCTOBER 2015 | EMSWORLD.com

How do you exchange an extraglottic airway for an ETT?

First of all, if it’s working, consider leaving it alone! For the King airway, don’t try the bougie trick. This is no longer recommended by the manufacturer. Make sure the patient is well oxygenated and the stomach is emptied. Then deflate the balloons and sweep the device over to the left side of the mouth. This technique usually allows enough working room to intubate while keeping the suction going and the esophagus blocked. And now there’s just one hole available!

For the Combitube and Easy Tube, deflate the proximal pharyngeal balloon, but leave the distal esophageal balloon inflated. Swep the device all the way to the left of the mouth with the King airway.

For the LMA Supreme, no good option is readily available. Oxygenate the patient as well as possible, empty the stomach, then pull the device out. An exceptionally proficient practitioner can work around it with a video device, but this method is not generally recommended.

For the i-gel, it is reasonable to try blind intubation using the manufacturer’s...
Selected Disposable Airway Devices Applicable to Prehospital or Hospital Use

Disposable supraglottic airways:

1. **Ambu Aura laryngeal mask**—Blind intubation through the device is possible, but intubation success rates are higher through the device with use of a flexible scope or optical stylet. Infant, pediatric and adult sizes (2 kg and up).

2. **Ambu AuraGain laryngeal mask**—Gastric access to vent the stomach in all sizes. Blind intubation through the device is possible, but intubation success rates are higher through the device with use of a flexible scope or optical stylet. Infant, pediatric and adult sizes (2 kg and up).

3. **i-gel O2 Resus**—Gastric access to vent the stomach. Supplemental O2 port for passive oxygenation. Manufacturer only recommends intubation through the device with a fiberoptic scope. Pediatric and adult sizes (30 kg and up) for EMS.

4. **i-gel**—Gastric access to vent the stomach except infant size 1. Manufacturer only recommends intubation through the device with a fiberoptic scope. Pediatric and adult sizes (30 kg and up) for EMS; infant, pediatric and adult sizes (4 kg and up) for anesthæsia.

5. **LMA Fastrach**—No gastric access. Success rates for blind intubation through the device are high. Pediatric and adult sizes (30 kg and up).

6. **LMA Supreme**—Gastric access to vent the stomach in all sizes. Intubation through the device is not possible without special tools and expertise. Infant, pediatric and adult sizes (2 kg and up).

7. **air-Q Blocker masked laryngeal airway**—Gastric access to vent the stomach in all sizes. Blind intubation through the device is possible, but manufacturer recommends intubation through the device with a fiberoptic scope. Pediatric and adult sizes (30 kg and up).

8. **air-Q masked laryngeal airway**—No gastric access. Blind intubation through the device is possible, but manufacturer recommends intubation through the device with a fiberoptic scope. Infant, pediatric and adult sizes (4 kg and up).

Disposable retroglottic airways:

9. **Combitube**—Gastric access to vent the stomach. For patients over 4 feet (1.2 m) tall.

10. **Easy Tube**—Gastric access to vent the stomach. For patients over 3 feet (1 m) tall.

11. **King Laryngeal Tube**—Gastric access to vent the stomach currently in sizes 2–5, but coming soon in pediatric sizes to the U.S. Intubation is not possible through the device without special tools and expertise. Infant, pediatric and adult sizes (2 kg and up).

Copyright ©2015 Medtronic. All rights reserved. Used with the permission of Medtronic.
recommended technique. Using a flexible fiber-optic scope or optical stylet is generally preferred.

• With other supraglottic devices, blind intubation with or without a bougie is generally not recommended. Intubation is very easy when using a flexible fiber-optic scope. One study found that with use of a scope, anesthesia trainees with minimal fiber-optic scope experience were just as successful as experienced anesthesiologists at placing ETs through LMA’s. See Figure 3.

Can an extraglottic airway be used when gastric decompression is needed?

• If you can show the really big tube down into their airways putting a smaller one down a predeterminated tube is beyond easy. In New Mexico EMS IT can place a gastric tube through an alternative airway that has a channel intended for that purpose. This is far easier than inserting a gastric tube through the nose or mouth. Why are only applying suction, not nothing blood or medications. If we get it wrong, it’s unlikely to result in any harm.

• Even if your system does not allow gastric decompressions, the patient can partially “self-decompress” air or liquids through the gastric access tube.

• With medical director approval, we suggest “pickholding” the King airway or laryngeal mask airway with the gastric tube prior to insertion. This means placing the gastric tube into the alternative airway before putting the alternative airway into the patient. It’s so much easier to pass the gastric tube it’s straightened, and you’re more likely to remember to use it!

We believe the chances of your patient aspirating are far less with alternative airways than with traditional bag-mask ventilation or even intubation (unless you have first-pass success). The odds are even better if you can decompress the stomach. See Figures 4, 5.

Can you hook these airways up to a ventilator?

• Yes! They do all the time in ORs, and it’s common for many flight and ground medical transport agencies.

Can you perform diagnostic imaging (x-ray/CT/ET) with them in place?

• Extraglottic devices don’t mess up ventilation or even intubation (unless you have first-pass success). The odds are even better if you can decompress the stomach. See Figures 4, 5.

Can you do cricothyrotomies with alternative airways in place?

• Absolutely! Hands down the prettiest way we’ve ever seen were performed with alternative airways in place. The patients were alive (hoo-rah), with reasonable saturations and ETCO2s, just with alternative airways.

Can you use alternative airways on patients with pierced tongues?

• There are no reports to the contrary. There is only one published case report of a patient with tongue jewelry who had a laryngeal mask airway placed. Anesthesia noted the jewelry was there and placed the airway with no complications."

which One?

Regurgitation does occur, and intubations are traditionally considered the preferred advanced airway management technique. But numerous alternatives exist. There are a variety of styles of extraglottic devices to choose from, and the devices offer a variety of helpful features, from pediatric sizes and gastric decompression to features that support the exchange of the extraglottic airway for an ET tube.

Extraglottic airways are applicable in virtually all circumstances and locations where airway management is needed, and their placement is generally much easier than bagging or intubation. They are also known to provide excellent patient ventilation. Efficient use of time and personnel combined with effective airway management sounds like a win-win all around. But remember, it’s imperative to know the ins and outs of the alternative airways you carry.

REFERENCES